If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2+2x-44=6
We move all terms to the left:
x^2+2x-44-(6)=0
We add all the numbers together, and all the variables
x^2+2x-50=0
a = 1; b = 2; c = -50;
Δ = b2-4ac
Δ = 22-4·1·(-50)
Δ = 204
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{204}=\sqrt{4*51}=\sqrt{4}*\sqrt{51}=2\sqrt{51}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{51}}{2*1}=\frac{-2-2\sqrt{51}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{51}}{2*1}=\frac{-2+2\sqrt{51}}{2} $
| (n-2)(180)/n=144 | | 2(3x+1)=4(x+1)+2x-2 | | 3(x-7)+2x=7x+11 | | 5x+15=10-5x | | 4z/10+4=-5 | | (3x-12)/2+(x+40)=90 | | 9x−5=9x−5 | | 10x+18=14x+4 | | 8w=2w+42 | | 3x-12+x+40=180-(x+40) | | w+6.8=8.48 | | (4x+3)23=180 | | 3x-12+x+40=180 | | z/10+2=9 | | 3/8(8x-20)+12=4x+3 | | 10x+8x=12x-10 | | 7x+8(-2-7)=-26+x | | -13j+8=-4 | | 9=1+x÷2 | | -4u=7=-10u+37 | | x^2+10x-33=6 | | k/5=15/18 | | 5(3x-2)=5(4x=1) | | -9g-3=-3(3g=2) | | 3(4x-9)=153 | | -1=4.4x-6.94 | | -1=7p-5-3 | | X*x-4x-8=0 | | u-5u=16 | | 4b+6+8=-2 | | 10+6x−4=−15+9x−3x | | p+2-5=-3 |